Editing Enzymes

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 3: Line 3:
An enzyme is a [[protein]] that catalyzes a chemical reaction, greatly speeding it up while not being consumed by the reaction. This allows enzymes to be active even in very low concentrations. Enzymes play an important role in the creation of all fermented beverages, and more generally, they are needed for all life processes.<ref name=kunzemashing/> As with all proteins, enzymes have particular temperature and pH ranges in which they function, and more narrow ranges in which the activity is considered optimal.<ref name=mostra>Mosher M, Trantham K. [[library|''Brewing Science: A Multidisciplinary Approach.'']] 2nd ed. Springer; 2021.</ref> The effect of temperature is greater than the effect of pH. Knowing the optimal ranges can be helpful, but it must be realized that the enzymes will be active to some extent outside those ranges.<ref name=bsp/> Enzymes denature (the three-dimensional structure unfolds) at higher temperatures, rendering them inactive.<ref name=kunzemashing/> Enzymes tend to have a very specific substrate upon which they act, and therefore are often named after the substrate, adding "-ase" to the end.<ref name=fix>Fix G. [[Library|''Principles of Brewing Science.'']] 2nd ed. Brewers Publications; 1999.</ref>
An enzyme is a [[protein]] that catalyzes a chemical reaction, greatly speeding it up while not being consumed by the reaction. This allows enzymes to be active even in very low concentrations. Enzymes play an important role in the creation of all fermented beverages, and more generally, they are needed for all life processes.<ref name=kunzemashing/> As with all proteins, enzymes have particular temperature and pH ranges in which they function, and more narrow ranges in which the activity is considered optimal.<ref name=mostra>Mosher M, Trantham K. [[library|''Brewing Science: A Multidisciplinary Approach.'']] 2nd ed. Springer; 2021.</ref> The effect of temperature is greater than the effect of pH. Knowing the optimal ranges can be helpful, but it must be realized that the enzymes will be active to some extent outside those ranges.<ref name=bsp/> Enzymes denature (the three-dimensional structure unfolds) at higher temperatures, rendering them inactive.<ref name=kunzemashing/> Enzymes tend to have a very specific substrate upon which they act, and therefore are often named after the substrate, adding "-ase" to the end.<ref name=fix>Fix G. [[Library|''Principles of Brewing Science.'']] 2nd ed. Brewers Publications; 1999.</ref>


'''Coenzymes''': The action of many enzymes is tied to the presence of an additional non-protein component that binds with its structure. For example, bivalent metal ions (e.g. iron, magnesium, calcium) are often involved as coenzymes.<ref>Kunze, Wolfgang. ''Technology Brewing & Malting.'' Edited by Olaf Hendel, 6th English Ed., VLB Berlin, 2019. p. 54.</ref>
'''Coenzymes''': The action of many enzymes is tied to the presence of an additional non-protein component that binds with its structure. For example, bivalent metal ions (e.g. iron, magnesium, calcium) are often involved as coenzymes.<ref>Kunze, Wolfgang. ''Technology Brewing & Malting.'' Edited by Olaf Hendel, 6th English Ed., VBL Berlin, 2019. p. 54.</ref>


'''Isoenzymes''': Enzymes that have different structures but catalyze the same reaction are called isoenzymes. Each isoenzyme may have different characteristics such as optimal temperature and pH ranges. Generally, most enzymes in living organisms have several isoenzymes.
'''Isoenzymes''': Enzymes that have different structures but catalyze the same reaction are called isoenzymes. Each isoenzyme may have different characteristics such as optimal temperature and pH ranges. Generally, most enzymes in living organisms have several isoenzymes.
Line 30: Line 30:


* Protein degradation and oxidation (see [[Protein]])
* Protein degradation and oxidation (see [[Protein]])
** '''Endopeptidases''', which include '''metalloproteases''', '''cysteine proteases''', '''aspartic proteases''', and '''serine proteases''' (optimal 45–50°C, pH 3.9–5.5) over 40 different endopeptidase enzymes degrade proteins into peptides and free amino acids.<ref name=esslinger/><ref name=kunzemashing>Kunze W. Wort production. In: Hendel O, ed. [[Library|''Technology Brewing & Malting.'']] 6th ed. VLB Berlin; 2019. p. 230.</ref>
** '''Endopeptidases''', which include '''metalloproteases''', '''cysteine proteases''', '''aspartic proteases''', and '''serine proteases''' (optimal 45–50°C, pH 3.9–5.5) over 40 different endopeptidase enzymes degrade proteins into peptides and free amino acids.<ref name=esslinger/><ref name=kunzemashing>Kunze W. Wort production. In: Hendel O, ed. [[Library|''Technology Brewing & Malting.'']] 6th ed. VBL Berlin; 2019. p. 230.</ref>
** '''Carboxypeptidases''' (optimal 50°C, pH 4.8–5.6) degrade proteins & peptides into free amino acids.<ref name=esslinger/><ref name=kunzemashing/>
** '''Carboxypeptidases''' (optimal 50°C, pH 4.8–5.6) degrade proteins & peptides into free amino acids.<ref name=esslinger/><ref name=kunzemashing/>
** '''Aminopeptidases''' (optimal 45°C, pH 7.0–7.2) degrade proteins & peptides into free amino acids.<ref name=esslinger/><ref name=kunzemashing/> Inactive during mashing.
** '''Aminopeptidases''' (optimal 45°C, pH 7.0–7.2) degrade proteins & peptides into free amino acids.<ref name=esslinger/><ref name=kunzemashing/> Inactive during mashing.
All contributions to Brewing Forward are released under the CC BY-NC-SA (see Wiki:Copyrights).
Do not submit copyrighted work without permission!

To edit this page, please answer the question that appears below (more info):

Cancel Editing help (opens in new window)

Template used on this page: